Results of a Phase 1 Trial to Investigate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of BION-1301 in Healthy Volunteers

<u>Jeannette Lo</u>¹, Peter van Zandvoort¹, Jos van de Crommert¹, Jessy Fan¹, Aaron Endsley², Thomas Müller¹, Sharon Yavrom¹, Angelique Mittan¹, Jonathan Barratt³, Jackie Walling¹, David Essayan⁴

¹Aduro Biotech; Berkeley, CA, USA; ²Certara; Princeton, NJ, USA; ³University of Leicester; Leicester, UK; ⁴ONCORD, Inc.; Westlake Village, CA, USA

Background

IgA nephropathy (IgAN), the leading cause of primary glomerulonephritis, is an autoimmune disease with no approved treatments.¹ A critical step in IgAN pathogenesis is the production of galactose-deficient IgA1 (Gd-IgA1) leading to the generation of anti-Gd-IgA autoantibodies and immune complex formation that result in kidney damage.² A proliferationinducing ligand (APRIL) promotes IgA class-switching and survival of IgA producing plasma cells.³ In a study of patients with IgAN, those with high plasma APRIL levels had higher Gd-IgA1 and proteinuria and lower estimated glomerular filtration rates than those with lower plasma APRIL levels.⁴ BION-1301, a first-in-class humanized antagonistic antibody targeting APRIL, reduced serum IgA, IgM, and IgG levels without drug-related toxicity in nonhuman primates⁵ and was well-tolerated with no dose-limiting toxicities in a Phase 1/2 first-in-human study in multiple myeloma⁶. Here we present healthy volunteer data from an ongoing three-Part Phase 1 trial to characterize the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of BION-1301 in healthy volunteers (HV) and patients with IgAN.

BION-1301 Blocks APRIL, a Critical Factor Driving the Etiology / Pathophysiology of IgAN

BION-1301-APRIL blockade in IgA Nephropathy

- First-in-class monoclonal antibody that blocks APRIL binding to B-cell maturation antigen (BCMA) and transmembrane activator and calciummodulator and cyclophilin ligand interactor (TACI)
- Recombinant, humanized IgG4 monoclonal antibody (mAb)
- Has been evaluated in 2 clinical studies to date (NCT03340883, NCT03945318)

APRIL: A PRoliferation Inducing Ligand

- TNF-family ligand implicated in regulation of B-cell mediated immune responses⁷
- Soluble factor that binds to its receptors TACI and BCMA inducing B cell signaling that drives:
- IgA class switching through TACI⁷
- Differentiation and survival of IgA-producing plasma cells through BCMA⁷
- Patients with IgAN have higher levels of APRIL compared to healthy controls⁸
- Higher APRIL levels in IgAN patients correlate with poor prognosis⁸
- A polymorphism in the APRIL gene confers IgAN susceptibility⁹

Blocking APRIL is a novel approach to address underlying pathology by reducing circulating levels of IgA, Gd-IgA1, anti-Gd-IgA1 autoantibodies and immune complex formation

Study Design and Objectives

ADU-CL-19 Is a Phase 1 Multicenter Trial to Evaluate the Safety, Tolerability, PK, and PD of IV Administered BION-1301. The Study Will Be

Single Ascending Dose (SAD) 1 Dose (Day 1) Study Duration 13 Weeks	10 mg (N=3)	50 mg (N=6)	150 mg (N=6)	450 mg (N=6)	1350 mg (N=6)	Placebo (N=9)	Total (N=36)
Any TEAEs	2 3 (66.7%) (50.09		3 (50.0%)	4) (66.7%)	3 (50.0%)	7 (77.8%)	22 (61.1%)
Grade 3 or higher TEAEs	0 0		0	0	0	0	0
Treatment-related TEAEs	2 (66.7%)	0	1 (16.7%)	1) (16.7%)	1 (16.7%)	2 (22.2%)	7 (19.4%)
≥ Grade 3 Treatment- related TEAEs	0	0	0	0	0	0	0
Treatment- emergent SAEs	0 0		0	0	0	0	0
Treatment-related treatment-emergent SAEs	0 0		0	0	0	0	0
Infusion-related reactions	0	0	0	0	0	0	0
Multiple Ascending Dose (MAD) 3 Doses (Day 1, 15, 29) Study Duration 17 Weeks			50 mg (N=6)	150 mg (N=6)	450 mg (N=6)	Placebo (N=9)	Total (N=27)
Any TEAEs			2 33.3%)	6 (100%)	5 (83.3%)	6 (66.7%)	19 (70.4%)
Grade 3 or higher TEAEs			0	1 (16.7%)	0	0	1 (3.7%)
Treatment-related TEAEs			2 33.3%)	2 (33.3%)	1 (16.7%)	1 (11.1%)	6 (22.2%)
≥ Grade 3 Treatment-related TEAEs			0	0	0	0	0
Treatment-emergent SAEs			0	0	0	0	0
Treatment-related treatment- emergent SAEs			0	0	0	0	0
Infusion-related reactions			0	1 (16.7%)	0	0	1 (3.7%)
Table 2. No SAEs, treatment discontinuations or events meeting stopping criteria were reported. All patients received							

BION-1301 Is Well-Tolerated in Healthy Volunteers

Table 2. No SAEs, treatment discontinuations or events meeting stopping criteria were reported. All patients received pre-medication prior to first infusion, and 1 infusion related reaction was reported in the MAD 150 mg cohort. The most common AE occurring in $\ge 10\%$ of subjects in the SAD cohorts was nasopharyngitis. The most common AEs occurring in $\ge 10\%$ of subjects in the SAD cohorts was nasopharyngitis. The most common AEs occurring in $\ge 10\%$ of subjects in the SAD cohorts was nasopharyngitis. The most common AEs occurring in $\ge 10\%$ of subjects in the SAD cohorts were headache, pain in extremity, elevated AST and nasopharyngitis. Note: A grade 3 TEAE of AST was reported but not considered related to study drug.

BION-1301 Dosing Is Associated With a Low Incidence of Non-Neutralizing Anti-Drug Antibodies (ADA) With No Correlation to Dose

	Subjects ADA+	ADA Titer		
	(Treatment Emergent)	Median, Maximum		
Placebo (n=18)	2 (11.1%)	150, 270		
SAD placebo (n=9)	N/A	N/A		
MAD placebo (n=9)	2 (22.2%)	150, 270		
BION-1301 (n=45)	4 (8.9%)	270, 810		
SAD (n=27)	1 (3.7%)	270, 270		
MAD (n=18)	3 (16.7%)	270, 810		
Total (N=63)	6 (9.5%)	270, 810		

BION-1301 Dose-Dependently and Durably Reduces IgA and IgM, and to a Lesser Extent IgG; Data Consistent With Potential for Monthly Dosing

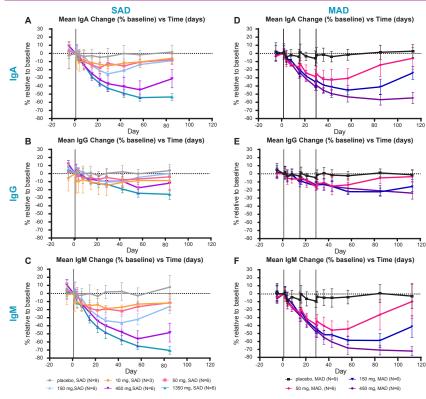


Figure 5. Mean % change ± SD of immunoglobulin levels in serum relative to baseline. (A-C) Single dose cohorts and (D-F) multiple dose cohorts relative to baseline over time (days). Baseline sample taken on Day 1 pre-dose.

Although IgA, IgM and to a Lesser Extent IgG are Durably Reduced, IgG Values Remain in the Normal Lab Range

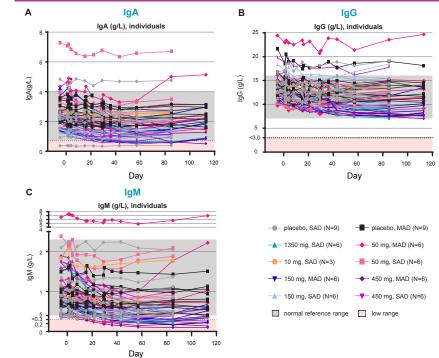
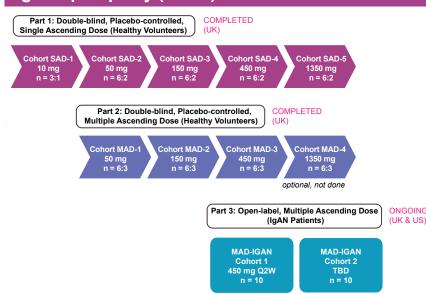



Figure 6. Serum levels (g/L) of (A) IgA, (B) IgG, and (C) IgM of individual subjects over time. BION-1301 at the 1350 mg single or 450 mg multiple dose levels results in suppression of IgM into low laboratory value range; however, there was no increase in infections associated with treatment. BION-1301-mediated immunoglobulin reduction has the potential to

Conducted in HVs (Parts 1, 2) and in Adults With IgA Nephropathy (Part 3)

Figure 2. Data Extract: 22 April 2020

Primary Objective

Assess safety and tolerability

Secondary Objective

 Characterize PK/PD and immunogenicity of BION-1301 administered by IV infusion

Exploratory Objectives

- · Characterize select biomarkers of activity
- · Assess changes in renal function in patients with IgAN

Methodology

Table 1

- PK analyses performed on serum concentration data using noncompartmental analysis and nominal sampling times and fixed doses with Phoenix[®] WinNonlin[®] Version 8.1
- Serum PK concentrations that were below the lower limit of quantitation (LLOQ) were reported as BQL (below quantification limit = $0.01 \mu g/ml$) and excluded from the PK analyses
- Levels of BION-1301 in serum were quantitated using ELISA-based immunoassays under GLP
- Immunogenicity was assessed from serum samples for presence of anti-drug antibodies (ADA) and neutralizing ADAs (Nabs) under GLP
- Serum levels of IgA, IgG, and IgM were measured using an immunoturbidimetric assay on the Roche Cobas 702 analyzer (lower limit of detection: IgA 0.05 g/L, IgG 0.30 g/L, IgM 0.05 g/L)

Baseline Demographics						
	SAD BION-1301 (N=27)	SAD Placebo (N=9)	MAD BION-1301 (N=18)	MAD Placebo (N=9)		
Age (years)						
Mean (std dev)	36.66 (8.38)	35.0 (8.39)	35.4 (9.01)	36.55 (7.85)		
Sex						
Male	27 (100%)	9 (100%)	18 (100%)	9 (100%)		
Female	0	0	0	0		
Race						
American Indian or Alaskan Native	0	0	0	0		
Asian	2 (7.4%)	3 (33.3%)	0	0		
Black or African American	6 (22.2%)	1 (11.1%)	3 (16.7%)	2 (22.2%)		
White	18 (66.7%)	4 (44.4%)	11 (61.11%)	4 (44.4%)		
Native Hawaiian or Pacific Islander	0	0	0	0		
Multiple	1 (16.7%)	1 (11.1%)	4 (22.2%)	3 (33.3%)		
BMI (kg/m²)						
Mean (std dev)	25.46 (2.47)	23.73 (2.94)	25.65 (3.00)	25.95 (1.56)		

 Table 3.
 Incidence of ADA in treated groups. No NAb were detected. Potential impact on PK cannot be determined as BION-1301 concentrations were already low when ADAs were detected. Note: Treatment Emergent ADA defined as ADA+ subjects that were negative pre-dose, or subjects with pre-existing ADA and twice the dilution level increase in titer post-dose. Based on Best Available Data.

Mean Serum BION-1301 Concentration Is Generally Dose-Proportional but Moderately Greater than Dose-Proportional at Higher Doses

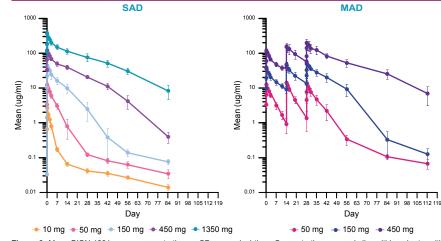


Figure 3. Mean BION-1301 serum concentrations \pm SD vs nominal time. Concentrations were similar within cohorts, with individual differences likely the result of fixed dose and variable body weights affecting drug disposition.

BION-1301 Demonstrates Durable Dose-Dependent Increase in Target Engagement as Measured by Free APRIL (fAPRIL)

for > 1 month at higher doses. Note: APRIL levels in IgAN patients are reported to be higher than in healthy volunteers.

BION-1301 PK is Well Behaved and the Estimated Half-Life Suggests the Potential for Monthly Dosing

	Single Ascending Dose (mg)					Multiple Ascending Dose (mg)			
	10	50	150	450	1350	50	150	450	
Summary	Mean	Mean	Mean	Mean	Mean	Mean	Mean	Mean	
Statistics	(CV%)	(CV%)	(CV%)	(CV%)	(CV%)	(CV%)	(CV%)	(CV%)	
C _{max} (μg/mL)	2.62	12.5	44.7	120	363	12.8	38.9	123	
	(5.9)	(19.5)	(18.5)	(9.0)	(18.4)	(5.8)	(12.7)	(18.6)	
T _{max} (day)	0.11	0.09	0.13	0.13	0.11	0.1	0.08	0.11	
	(43.3)	(45.4)	(36.5)	(36.5)	(38.5)	(35.0)	(0.0)	(38.7)	
AUC _{₀-14 day}	7.3	56.1	264	789	2340	58.9	235	779	
(day ∙ µg/mL)	(12.9)	(18.8)	(22.0)	(13.2)	(15.0)	(15.5)	(16.5)	(12.8)	
AUC _{₀-14} /Dose	0.73	1.12	1.76	1.75	1.73	1.18	1.57	1.73	
(day • µg/mL/mg)	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)	(NC)	
Table 4. Summary statistics of PK parameters by dose cohort. Exposures were similar within cohorts, with individua									

differences likely the result of fixed dose and variable body weights affecting drug disposition. Half-life ($t_{1/2}$) was estimated for SAD 1 and SAD 2 cohorts as 31.8 days and 34.0 days, respectively. Clearance was estimated for SAD 1 and SAD 2 cohorts as 1000 ml/day and 765 ml/day, respectively. Note: Multiple dose cohorts only include data from the 1st dose.

disrupt the stoichiometry of IgA:IgG immune complexes.

Effective Suppression of Immunoglobulins Offers a Pharmacodynamic Window to Exploit IgA Reduction While Tempering Impact on IgG

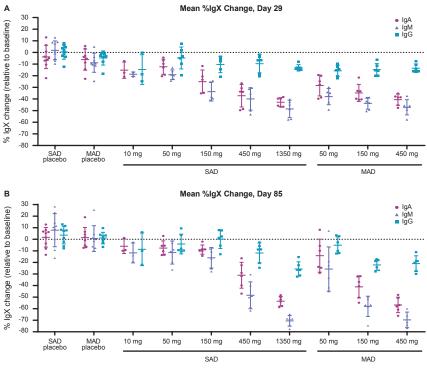


Figure 7. Comparison of mean % change across immunoglobulins at (A) Day 29 and (B) Day 85, relative to baseline Note: Data from multiple dose cohorts at Day 29 (A) reflect % changes following only 2 doses.

CONCLUSIONS

- BION-1301 was well-tolerated in healthy volunteers with low incidence of non-neutralizing ADAs reported
- The PK profile of BION-1301 was well behaved, generally dose-proportional and demonstrated a half-life with the potential to be administered by monthly dosing
- BION-1301 demonstrates a durable dose-dependent increase in target engagement as measured by fAPRIL
- BION-130 dose-dependently and durably reduces IgA and IgM, and to a lesser extent IgG; however, IgG values remain in the normal lab range
- BION-1301-induced suppression of immunoglobulins offers a pharmacodynamic window to exploit IgA reduction while minimizing impact on IgG

Next Steps

- Complete analysis of exploratory biomarkers (e.g. Gd-IgA1) from Parts 1 and 2
- Enroll and evaluate impact of BION-1301 on IgAN patients in Part 3 (NCT03945318) and the long-term impact of BION-1301 administration in an Open-Label Extension study for these patients
- Continue development of BION-1301 by determining SC bioavailability

References

1. Berthelot L, et al. *Kidney Int.* 2015. 2. Reily C, et al. *Biotechniques*. 2018. 3. He B, et al. *Nat Immunol.* 2010. 4. Zhai YL, et al. *Medicine (Baltimore)*. 2016. 5. Dulos J, et al. *ASN Annual Meeting*. 2018. 6. Bensinger W, et al. *ASCO Annual Meeting*. 2019. 7. Guadagnoli, M, et al. *Blood*. 2016. 8. Han, SS, et.al. *JASN*. 2016. 9. Xie, J, et.al. *Contribu Nephrol*. 2013.

Please see our other Poster P0379 summarizing our nonclinical data with BION-1301

Click Here to See Poster P0379

